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Fabry-Pérot resonances in the transmission through single and double, graphene-based barriers �of height V�
and wells are investigated and their dependence on an applied perpendicular magnetic field. For rectangular
barriers the conductance decreases with increasing magnetic field while the resonances weaken �become more
pronounced� with increasing magnetic field for EF�V �EF�V�. The position of the resonances exhibit a linear
shift with magnetic field which move to lower �higher� energy for EF�V �EF�V�. Compared to semielliptic-
or Gaussian-shaped barriers they show a smaller number of resonances in the absence of a magnetic field and
an overall lower conductance but the resonant structure is more pronounced. The conductance of asymmetric
double barriers show two major regions of resonances while the symmetric ones show one, that of three
asymmetric barriers three, and so on.
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I. INTRODUCTION

Graphene, a one-atom-thick monolayer of graphite with a
honeycomb lattice structure, is a new material which has
raised tremendous interest in recent years. Charge carriers in
a wide single-layer graphene behave like “relativistic,” chiral
massless particles with a “light speed” equal to the Fermi
velocity and possess a gapless, linear spectrum near the K
and K� points.1,2 One major consequence is the perfect trans-
mission through arbitrarily high and wide barriers, referred
to as Klein tunneling.3–7 This complicates the control of elec-
trons by electric fields in this ideal two-dimensional �2D�
layer. Electrons cannot be confined, e.g., in an electrically
created quantum dot, the dot has no bound states3 but may
exhibit sharp resonant states which can be viewed as quasi-
bound states.8 Another possibility is to use an inhomoge-
neous magnetic field. It was shown in numerous papers that
an inhomogeneous magnetic field confines the usual
electrons9 and recently the Dirac electrons as well.10–17 Many
of graphene’s properties are reviewed in two recent works,
see Ref. 18.

One important aspect of the electronic transmission
through quantum structures is the Fabry-Pérot �FP� reso-
nances which are a consequence of the wave nature of the
electron. Recently it was shown that such resonances exist
for different semi-infinite structures such as barriers or
double barriers �wells�.19–22 In addition, n-p, n-p-n, and
p-n-p junctions have been fabricated22–31 in which Klein tun-
neling and Fabry-Pérot resonances were observed.23,24 In
such devices the height of the potential barriers and the po-
sition of the Fermi level could be tuned by gate potentials. In
Ref. 24 the metallic gates that induced the potential barriers
were about 50–100 nm separated from the graphene layer
and the length of the Fabry-Pérot cavity was about 740 nm.
With such devices FP resonances were observed in the resis-
tance oscillations. In such p-n junctions the top gate lays on
an insulating layer that can decrease the mobility of
graphene. In order to avoid this problem one can fabricate
p-n-p graphene structures using suspended air-bridge top
gates.25

The recent theoretical work of Ref. 22 studied the depen-
dence of Fabry-Pérot resonances on magnetic field in the
presence of a parabolic gate potential.25 In such a system �for
E�0� the electronlike states inside the potential region give
rise to the FP resonances. Here we consider a potential bar-
rier which has both electronlike �E�V� and holelike
�E�V� states for E�0, and compare the effect of a mag-
netic field on the FP resonances of these two different states.
We consider single and multiple rectangular barrier struc-
tures and concentrate on resonances in the transmission and
conductance and their dependence on magnetic field which,
to our knowledge, has not been investigated so far. In Sec. II
we study Fabry-Pérot resonances for a single and double
barrier as an interferometer. In Sec. III we apply a magnetic
field �homogeneous in one direction� in a semi-infinite re-
gion, solve the Dirac equation, and obtain the eigenfunctions.
Then we present results for the transmission and in Sec. IV
for the conductance for zero and nonzero magnetic field. We
also investigate the effect of the shape of the potential barri-
ers on the resonances. Our concluding remarks follow in
Sec. V.

II. POTENTIAL BARRIER AS A FABRY-PÉROT
INTERFEROMETER

The low-energy quasiparticles �electrons and holes� in
graphene are described by the following Dirac type Hamil-
tonian:

H = vF� · p + V , �1�

where p�=−i��� /�x�� is the momentum operator, vF the
Fermi velocity, and � the Pauli matrices. We assume
V=V�x� to be one-dimensional potential. Then the equation
H��x ,y�=E��x ,y� admits spinor solutions of the form

��x,y� = ��I�x,y�
�II�x,y�

� . �2�

Due to the translational invariance along the y
direction we attempt solutions of the form
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��x ,y�=exp�ikyy���1�x� ,�2�x��T with T denoting the trans-
pose of the row vector. Then �1�x� and �2�x� obey the
coupled first-order differential equations,

− i�vF�d/dx + ky��2 = ��1, �3a�

− i�vF�d/dx − ky��1 = ��2, �3b�

where �=E−V. To simplify the notation we introduce the
dimensionless variables t→ t� /vF , r�→�r� , v� →vFv� , V
→E0V , E→E0E , E0=�vF /�. For a step potential V�x�
=V	�x� �see Fig. 1�a�� the solutions of Eqs. �3� are

�1�x,y� = eikyy� eik1x + re−ik1x

si�eik1x+i
 − re−ik1x−i
�
� , �4�

�2�x,y� = eikyy� te�ik2x

�site
��ik2x+i�� � , �5�

where si=sgn�E−Vi�, ki= ��i
2−ky

2�1/2 with i=1,2, tan 

=ky /k1, and tan �=ky /k2. After matching these solutions at
x=0 we obtain the transmission probability T= tt� and con-
sider two different cases: �1� E�V, leading to

tE�V =
2 cos2 


e−i
 + e−i� , TE�V =
2 cos2 


1 + cos�
 − ��
, �6�

and �2� E�V that leads to

tE�V =
2 cos2 


e−i
 + ei� , TE�V =
2 cos2 


1 + cos�
 + ��
. �7�

Using electron momentum conservation in the y
direction at x=0, we obtain Snell’s law in the form
sin 
= �1−V /E�sin �. For E�V the step potential acts like a
medium with negative refractive index �see Fig. 1�b�� and an
incident beam of electrons can be focused to the right of the
potential step.4 The critical angle is sin 
c= �1−V /E�. For
E�V /2 we find that 
c is imaginary �k1 is imaginary� and
thus the electron is confined to the right of the interface at
x=0.

Next we consider a potential barrier of width W. From an
optical point of view the barrier is like a medium with re-
fractive index 1−V /E. When we inject a wave at an angle of
incidence 
, it splits into transmitted and reflected waves, the
transmitted wave inside the barrier is multiply reflected at the
two edges, at x=0 and W, as shown in Fig. 2. In analogy
with optical waves, the difference in the optical paths along

the barrier, between the transmitted waves t1 and t2, is

�L = �1 − V/E��BC + CD� − BN , �8�

where BC=CD=W /cos � and BN=2W tan � sin 
. Using
sin 
= �1−V /E�sin �, we obtain

�L = 2�1 − V/E�W cos � . �9�

The total transmission is given by T= �t1�2+ �t2�2
+2�t1��t2�cos 
 with the corresponding phase difference,


 = k1�L = 2k1�1 − V/E�W cos � . �10�

The transmission is maximum when �
�=0,2� ,4� , . . ., and
minimum for �
�=� ,3� , . . . To obtain the total transmission
we define r and t to be, respectively, the reflection and trans-
mission amplitudes outside the barrier, and r� and t� the cor-
responding amplitudes inside the barrier. The different com-
binations of the transmitted waves through the barrier are

tt�,tt�r�2ei
, . . . ,tt�r�2�n−1�ei�n−1�
, . . . , �11�

and the total transmission amplitude

ttot = tt��1 + r�2ei
 + ¯ + r�2�n−1�ei�n−1�
 + ¯� = tt�/�1

− r�2ei
� . �12�

The total transmission probability Ttot= ttotttot
� is

Ttot = 1/�1 + F sin2�
/2�� �13�

with F=4R / �1−R�2 the finesse of the barrier, R= �r��2, and
T= tt�. Using Eqs. �4� and �5� we obtain r� and

F =
�1 − cos�
 − ����1 + cos�
 + ���

cos2 
 cos2 �
. �14�

Using Eq. �14� in Eq. �13� we find the transmission probabil-
ity for a single barrier,3,18

T =
cos2 
 cos2 �

�cos � cos 
 cos ��2 + sin2 ��1 − ss0 sin 
 sin ��2 ,

�15�

where �=k2W. Substituting �=n� in Eq. �15� we obtain the
energies E at which the resonances occur �i.e., T=1�

E = V � �ky
2 + n2�2/W2�1/2. �16�

We have at least one resonance if

�

�

��

E > V E < V

21 21
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FIG. 1. �Color online� �a� Schematics of the transmission
through a potential step for an electron with E�V or positive re-
fractive index. �b� Same as in �a� but for a negative refractive index
or E�V.
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FIG. 2. �Color online� Schematics of multiple reflections inside
a barrier.
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W � �/V . �17�

As shown in Fig. 3�c� there are four different regions. In
the green region k1 and � are real and the solutions inside
and outside the barrier are traveling waves and due to Klein
tunneling we have a high transmission probability where the
transmission maxima given by Eq. �16� and shown in Fig.
4�a� by the dashed curves. We can divide this region in two
parts: E�V /2 and E�V /2. For E�V /2 all maxima termi-
nate in the free-electron spectrum E=V�ky that is shifted by
the barrier potential. For E�V /2 though all maxima �dashed
curves� cut the free-electron spectrum E= �ky. The corre-
sponding crossing points can be found by substituting ky

2

=E2 in Eq. �16�. We can also obtain the confinement state by
using the localized solutions for the electron outside the bar-
rier. The spectrum of the bound states are obtained from the
solution of the transcendental equation,32

tan��W� = −
k1k2

�V − E�E + ky
2 . �18�

Indeed, for �W=n�, Eq. �18� entails k1→0, ky
2=E2 and we

can rewrite Eq. �16� as

E =
V

2
−

n2�2

2W2V
. �19�

In the blue �dark gray� region of Fig. 3�c� k1 is real but k2 is
imaginary. Then we have traveling wave solutions outside
the barrier but inside it the solutions are evanescent waves.
This is similar to the case of a standard electron with energy

E�V passing through a potential barrier with small trans-
mission probability.

In the yellow region of Fig. 3�c� k2 is real but k1 is imagi-
nary. This results in traveling wave solutions inside the bar-
rier and evanescent ones outside it, that is, we have states
bound to the potential barrier see Fig. 3�b�. In fact, we have
angular confinement of the waves inside the barriers if the
following inequalities are satisfied:

arctan�EF/�V2 − 2EFV�1/2� � � � �/2,

− �/2 � � � − arctan�EF/�V2 − 2EFV�1/2� . �20�

The energies of the bound states coincide with those at which
the transmission maxima occur and are given by Eq. �19�.
Finally, in the white region both k1 and k2 are imaginary. The
corresponding solutions are evanescent waves and the elec-
tron cannot tunnel through the barrier.

A few contour plots of the transmission are shown in Figs.
4 and 5, see the caption for details on the parameters. One
can clearly see the Fabry-Pérot resonances in all cases. A
fundamental difference with the corresponding results for
Schrödinger-type electrons is that the Fabry-Pérot resonances
now depend on ky as well instead of only the wave vector kx.
In Fig. 5 we show a contour plot of transmission as a func-
tion of momentum and potential height. The potential height
can be controlled by an applied top gate.25

Next we consider a double barrier and start with a sym-
metric one, i.e., one in which the barriers have the same
height and width and are separated by a distance Ws. The
wave vector kx is the same in the regions between the two
barriers, to the left of the first barrier and to the right of the
second one. For each barrier we can use the results given
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FIG. 3. �Color online� �a� Schematics of the transmission
through a barrier of width W. �b� The wave function of a localized
state in the yellow region of �c�. Dispersion relation E�ky� in the
presence of a potential barrier. The dotted curves show the analyti-
cal dispersion relation �16� for W=100 nm and V=100 meV. The
four qualitatively different transmission regions are explained in the
text.

FIG. 4. �Color online� �a� Contour plot of the transmission vs
energy E and wave vector ky. The dotted curves show the analytical
dispersion relation �16� for W=100 nm and V=100 meV. �b�
Transmission vs kx and ky for W=100 nm and V=100 meV. The
dashed curve shows the position of E=V /2. ��c� and �d�� Contour
plot of the transmission for constant energies E=25 meV and E
=50 meV, respectively, as a function of W and ky.
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above. The result for the transmission and reflection coeffi-
cients, in matrix form, reads

�1

r
� = MLMWs

MR� t

0
� = MD� t

0
� , �21�

here ML, MR, and MWs
are the transfer matrices to the left of

the first barrier, to the right of the second barrier, and be-
tween the barriers, respectively. The element M11 of the
transfer matrix for a single barrier in polar coordinates is

M11 = m11e
i�, �22�

where

m11 = �cos2��W� + �1 − s0s sin 
 sin �

cos 
 cos �
�2

sin2��W�	1/2

.

�23�

The phase � is given by

� = − arctan��1 − s0s sin 
 sin �

s cos 
 cos �
�tan��W�	 + kW ,

�24�

where si=sgn�E−Vi�. Evaluating MD11 we obtain

�MD11�2 = ML11MR11e
−ikxW + ML12MR21e

ikxW

= ��m11�2 − �M21�2�2 + 4�m11�2�M21�2cos�kxWs − �� ,

�25�

where the matrix element M21 of a single barrier is

M21 =
1

2 cos 
 cos �
�ei
 cos�2�a + �� −

is0

s1
sin�2�a�	

+ � i

s1
sin�2�a� − s0ei
 cos�2�a − ��	 . �26�

Then the transmission is given by

Ttot�E� =
1

�M11�2
=

T1
2

T1
2 + 4R1 cos2�kxWs − ��

, �27�

where T1 and R1=1−T1 are the transmission and reflection
coefficients of the single barrier �see Eq. �15��, respectively.

The minimum of the transmission occurs for
kxWs−�=n� and is

Ttot
min =

T1
2

T1
2 + 4R1

=
T1

2

�T1 − 2�2 . �28�

This is an increasing function of T1 with a maximum value
Ttot

min=1 when T1=1. Notice that here we cannot use the ar-
gument that the transmission through the single barrier is
small since due to Klein tunneling T1=1 for �W=n� in
which case Eq. �28� gives Ttot

min=1. When the cosine in Eq.
�28� vanishes the transmission approaches unity which oc-
curs when Ttot

max=1,

kxWs − � = �2n + 1��/2, n = 0,1, . . . , �29�

where Ws is the distance between the two barriers. Then for
a double barrier we have two conditions in order to have
maximum transmission, namely,

�W = n�, kxWs − � = �2n + 1��/2, n = 0,1, . . . �30�

Results for the transmission are shown in Fig. 6�a� for a
double barrier. Notice that the numerical results are rather
similar with those of a single barrier depicted in Fig. 4�a� for

(a)

(b)

FIG. 5. �Color online� �a� Contour plot of the transmission
through a single barrier vs its height V and wave vector ky for
W=100 nm. �b� Same as in �a� but in the presence of a magnetic
field B=100 mT.

d

B = 0 T B = 0.1 T

B = 0.3 TB = 0.2 T

a b

dc

ky(nm)
-1 ky(nm)

-1

ky(nm)
-1ky(nm)

-1

FIG. 6. �Color online� Contour plot of the transmission through
a double barrier for different magnetic fields with W=50 nm,
Ws=100 nm, and V=100 meV.
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E�V. The major difference is that the resonances are more
pronounced and are not restricted to the cape region. Notice
that for E�V the resonances for a single barrier have a con-
cave E−ky relation while for the resonant structure the be-
havior is convex �except near E
V /2�.

The above procedure can be repeated for symmetric
double wells and the numerical results are shown in Fig.
7�a�. As compared to the double barrier structure the reso-
nances are very weak and the transmission is strongly en-
hanced and different from zero within the cone.

III. FABRY-PÉROT RESONANCES IN THE PRESENCE OF
A MAGNETIC FIELD

We start with a 2D graphene sheet in the presence of a
perpendicular magnetic field B�x� and a constant potential
barrier of height V and width W. An electron in this system is
described by the Hamiltonian

H = vF� · �p + eA�x�� + V . �31�

Then �1�x� and �2�x� obey the coupled first-order differen-
tial equations,

− i�vF�d/dx + �ky + eA�x�/����2 = ��1, �32a�

− i�vF�d/dx − �ky + eA�x�/����1 = ��2, �32b�

where �=E−V. We now consider a homogeneous magnetic
field B0 and use the Landau gauge A�x�= �0,B0x ,0�. Again
we use the dimensionless variables B�x�→B0B�x� , A�x�
→B0�A�x� and set �=eB0�2 /�=�2 /�B

2 , where �B is the mag-
netic length ��B= �� /eB0�1/2� with �=1 nm. Then we can
write A�x�=�x. Further, by operating on Eq. �31� with
−i�d /dx� �ky +�x�� we can decouple them. With
z= �2 /��1/2�ky +�x� the result is

�d2/dz2 − z2/4 + p� + 1/2�c� = 0 �33�

with p�=�2 /2��1 /2−1 /2, c−=�1�z�, and c+=�2�z�. The
solutions of Eq. �33� are the parabolic cylinder functions
which can also be expressed as Weber functions.33 The
eigenfunctions c� are linear combinations of the linearly in-
dependent Weber functions D�p ,z� and D�p ,−z�. Explicitly,
with �= i� / �2��1/2 we have

�1�z� = − A�D�− �2 − 1,z� + B�D�− �2 − 1,− z� ,

�2�z� = AD�− �2,z� + BD�− �2,− z� . �34�

In the present paper we are interested in learning how the
tunneling resonances are influenced by a magnetic field. We
inject an electron beam with momentum k= �kx ,ky� toward
the barrier and investigate the reflected and transmitted
beams. If the magnetic field extends over the whole space,
such a procedure cannot be used because electrons would be
localized on cyclotron orbits. In a real experiment this is
overcome by the diffusive motion of the electrons outside the
barrier region. Therefore, for technical reasons, we limit the
magnetic field to the barrier region, where transport is as-
sumed to be ballistic when we deal with a single barrier, and
to the resonant structure region when we deal with a multi-
barrier structure. First we consider a single barrier, cf. Fig.
3�a�. The solutions for the components �1�z� and �2�z� in the
three spatial regions are

�1�z� = 
eikxx + re−ikxx x � 0

��dD�p − 1,− z� − cD�p − 1,z�� , 0 � x � W

teikx�x x � W ,
�
�35�

�2�z� = 
eikxx+i� − re−ikxx−i� x � 0

cD�p,z� + dD�p,− z� 0 � x � W

teikx�x+i� x � W .
� �36�

Here �= i� /�2� , p=�2 /2�, �=E−V, kx= �E2−ky
2�1/2, kx�

= �E2− �ky +�W�2�1/2, tan �=ky /kx, and tan �= �ky +�W� /kx�.
To find the transfer matrix for this system we proceed as
follows. For 0�x�W the solution can be written as a com-
bination of Weber functions. Matching the wave function at
x=0 and x=W gives the matrices

N1 = �− �Dp−1�z0� �Dp−1�− z0�
Dp�z0� Dp�− z0�

� , �37�

N2 = �− �Dp−1�zW� �Dp−1�− zW�
Dp�zW� Dp�− zW�

� . �38�

The transfer matrix M and the transmission T=1 / �M11�2 is
determined by its element M11 given by

M11 =
�N11 + N12e

i
�e2ika−i
 + �N21 + N22e
i
�e2ika

2 cos 

�39�

with the matrix N given by N=N1N2
−1. In a similar manner

we obtain the results for a single well.

a b

dc

B = 0 T B = 0.2 T

B = 0.4 T B = 0.6 T

ky(nm)
-1

ky(nm)
-1

ky(nm)
-1

ky(nm)
-1

FIG. 7. �Color online� The same as in Fig. 6 but for a double
well with V1=V2=−100 meV.
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In the presence of a magnetic field the transmitted waves
inside the barrier will turn and the angles for the transmitted
and reflected waves inside the barrier are different �see Fig.
8�. The relations between the angle of the transmitted wave
inside the barrier �1 and the angle of the traveling wave
�2�x� inside the barrier are

�
�1

��x�

d� cos � = �
0

x

dx
�

E − V
�40�

and thus,

sin �2�x� = sin �1 +
�x

E − V
, �41�

from which we obtain a relation between the angle of inci-
dence 
1 and the angle of exit �2�W�,

sin �2�W� =
E sin 
1 + �W

E − V
. �42�

The critical angle 
c can be found by setting �2�W�=� /2; it
is

sin 
c = �1 −
V + �W

E
� �43�

and due to the inequality −1�sin 
c�1 we find

−
V

W
� � �

2E − V

W
. �44�

In the presence of a weak magnetic field the correspond-
ing optical refractive index changes with the position x
in the manner n�x�=1−Vef f�x� /E. The function Vef f�x�
plays the role of an effective potential. Let us consider
Vef f�x�=V+g�x�, where V is the initial potential at zero mag-
netic field and g is a perturbation term due to the magnetic
field. Using Eq. �41� we can evaluate g as

g�x� =
��E − V�x

�E − V�sin �1 + �x
. �45�

For weak magnetic fields � is small and the effective refrac-
tive index can be written as

n�x� � 1 −
V

E
−

�x

E sin �1
. �46�

The classical trajectory between 0 and W can be obtained
from

d2y

dx2 =
1

2�2

�n2

�x
�47�

with �= �1−V /E�cos �1. If we neglect terms of order �2 the
solution of Eq. �47� is

y =
− �

2�E − V�sin �1 cos2 �1
x2 + x tan �1. �48�

Using the same procedure as in Sec. II we obtain the classi-
cal optical path,

�L � 2�1 −
V

E
�W cos � −

�W2

E
� 1 + 2 sin2 �1

sin �1 cos �2
	 , �49�

where the first term is the optical path at zero magnetic field
�see Eq. �9��. As shown in Fig. 9�a� for E�V the optical path
decreases with increasing magnetic field while in Fig. 9�b�
for E�V it increases. For E�V, �2 increases very fast with
magnetic field and the probability for the electron to pass
through the barrier diminishes quickly. As shown later in Fig.
12 for E�V, the resonances weaken with increasing mag-
netic field and finally disappear.

For double barriers or wells we follow the same
procedure. Because the analytical results become too un-
wieldy, in what follows we present only the numerical re-
sults. A contour plot of the transmission through a double
barrier, for different magnetic fields, is shown in Figs.
6�a�–6�d� and through a double well in Figs. 7�a�–7�d�. We
see clearly that increasing the magnetic field leads to a shift
�ky =−��2W+Ws� /2 �and correspondingly to an induced en-
ergy gap �E /E0=2��ky�� of the transmission cone, a reduc-
tion in the number of resonances, and a shrinking of the
region of perfect transmission.

IV. CONDUCTANCE

Selecting the wave vector components kx and ky is very
difficult, although, in principle, possible experimentally us-
ing quantum point contacts. However, experimentally one
usually measures the average transmission. Typically one
measures the current J which is proportional to a weighted
integral of the transmission T�kx ,ky�. For the linear spectrum
E=�vFk the conductance G is given by

� �

E > V E < V

21 21

(a) (b)
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FIG. 8. �Color online� Potential step in the presence of a mag-
netic field.
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FIG. 9. �Color online� Electron trajectories through a potential
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G = G0� T�E,
�f�1 − f�EdE cos 
d
 , �50�

where f � f�E−EF� is the Fermi-Dirac distribution function
and EF the Fermi level. Further, G0=2e2L /vFh2 and L is the
width of the entire structure along the y axis �L�W�. With
the explicit form of f the conductance becomes

G�EF� = G0�
−�

+�

EdE�
−�/2

�/2

T�E,
�

���/4�cosh−2���E − EF�/2�cos 
d
 �51�

with �=1 /kBT and kB the Boltzmann constant. Here we will
restrict ourselves to zero temperature. Then the conductance
takes the simpler form

G = G0�
−�/2

�/2

T�EF,
�EF cos 
d
 . �52�

Here we consider only the conductance through the tunnel-
ing barrier�s� and neglect the contribution from the region
before and after the resonant structure. Therefore, we only
need the transmission T�E ,
� through the resonant structure
where it is allowed to restrict the magnetic field to the region
of the resonant barrier structure.

First we consider the conductance for transport through a
single barrier. In order to show more clearly the resonances
we plot in Fig. 5 the second energy derivative of the conduc-
tance as a function of the Fermi energy EF and the width of
a single barrier for EF�V in �a� and EF�V in �b�. In both
cases the magnetic field is zero. The positions of the reso-
nances are approximately given by the dashed curves,

En = V � n�/W , �53�

the + �−� sign is for EF�V �EF�V�. For EF�V /2, that is, to
the left of the vertical dashed line in Fig. 10�a�, we notice
two types of peaks that have a different energy dependence.
One is given by Eq. �53� and the other by Eq. �19�. The latter
increases much faster upon increasing the energy and asymp-
totically reaches the line E=V /2 for W→� as we show
separately in Fig. 10�c�. The latter resonances occur only for
E�V /2 and this implies that the transmission maxima are
connected to the bound states in the barrier region as given
by Eq. �19�. With reference to Fig. 4�b� we see that all these
maxima occur for E�V /2.

From the Bohr-Sommerfeld quantization condition we
have22,34

�
x−

x+

px�x�dx = �n + 1/2 − ���� �54�

with

px�x� = ��E − V�2 − �ky + �x�2�1/2, �55�

where x− and x+ are the turning points, x�=−ky /��� /�, �
=E−V, and � the Berry phase contribution which is 1/2 for
Dirac fermions.35 The integral over x can be carried out. The
result is

I = �
0

W

px�x�dx =
�2

2�
�y�1 − y2�1/2 + arcsin y�0

W �56�

with y= �ky +�x� /�. The transmission probability is symmet-
ric about ky =−q0=−�W /2 and thus we find

I = ��/���q0�1 − q0
2�1/2 + arcsin�q0�� . �57�

For weak magnetic fields ��→0�, the integral in Eq. �57� can
be simplified to

I � �
0

W

��2 − 2ky�x�1/2dx . �58�

This gives
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FIG. 10. �Color online� Contour plot of the second derivative of
the conductance with respect to the energy for a single barrier vs
energy E and barrier width W, for EF�V in �a� and EF�V in �b�,
with V=100 meV. The dashed curves show the position of the
peaks resulting from Eq. �53�. �c� The additional peaks of �a� for
EF�V /2.
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�n � � � n�

2W
+ �� n�

2W
�2

+ ��W

2
�2	1/2� . �59�

For �=0 Eq. �59� is exactly the same as Eq. �16� with
ky =0. The difference between the spectrum with and without
magnetic field is

��n = �n
B�0 − �n

B=0. �60�

Now we consider two different cases:
�1� For E�V we have

��n = n�/2W − ��n�/2W�2 + ��L/2�2�1/2 �61�

while for �=0 we easily obtain ��n=0. Because of
��n�0 we have �n

B�0��n
B=0. This means that the resonance

energies in the presence of a magnetic field shift below those
for zero magnetic field. For the resonance energies in the
range 0�E�V we have also another limitation which
comes from the energy gap opening through the magnetic
field, Egap=�W /2. The resonance energies in the presence of
a magnetic field can be reduced until the energy value be-
comes equal to Egap or simply Egap=�n

B�0. From this relation
we can also find the number of resonances n and the width W
after which the conductance drops to zero, see Fig. 11 for
0�E�V.

�2� For E�V we have

��n = − n�/2W + ��n�/2W�2 + ��L/2�2�1/2. �62�

This means that the position of the resonances in the pres-
ence of magnetic field is shifted to higher energy or
�n

B�0��n
B=0, see Fig. 11 for E�V.

The conductance of a single barrier and that of a single
well are shown in Fig. 12 for different magnetic fields B, the
former to the right of the point EF=0 and the latter to its left.
It is apparent from Fig. 12 that the conductance decreases
with increasing magnetic field. We also see that there is a
special point EF�V in the former where the conductance is
almost insensitive to the value of the field B and the inset
makes that clear. This can be understood as follows. For
EF→V and ky→�→0 Eq. �15� shows that the transmission
probability near the top of the barrier is

T � 1/cosh2�kyW� , �63�

as previously obtained in Refs. 36 and 37 in the absence of a
magnetic field. The corresponding conductance is

G =
4e2

vFh2

L

W
tanh�VW� . �64�

To see the dependence of the conductance on magnetic
field more clearly, we show a contour plot of its logarithm in
Fig. 13 for a single barrier. We notice that for EF�V the
energy of the different resonances increase with B whereas
for EF�V they decrease. This opposite behavior can be un-
derstood as follows. In the limiting case �W� p2, that is, for
B→0, to a first approximation the resonant energies are

E − En 
 � �/2N �65�

with N= �n+1 /2�� /W; the + �−� sign is for E�V �E�V�
and En is given by Eq. �53�. Accordingly, these energies, as a
function of the magnetic field, for EF�V have the opposite
behavior compared to those for EF�V. A contour plot of the
first derivative of the conductance of a p-n-p structure is
shown in Fig. 14�a�. The resonances in the conductance for
several magnetic fields are shown in Fig. 14�b� where we
plot the conductance of the p-n-p structure as a function of
the potential height for fixed Fermi energy. The results are in
good agreement with the experimental ones.23

W

FIG. 11. �Color online� Contour plot of the conductance of a
single barrier vs Fermi energy EF and barrier width W for
V=100 meV and B=0.3 T.
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FIG. 12. �Color online� Conductance of a single barrier and a
single well for different magnetic fields with W=100 nm and
V=100 meV. The inset is a blowup of the region near 100 meV.
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FIG. 13. �Color online� Contour plot of the logarithm of the
conductance of a single barrier, in units of G0, vs magnetic field B
and Fermi energy EF with W=100 nm.
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For EF�V the conductance for B=0 exhibits a local mini-
mum, which is a signature of Klein tunneling. Notice that for
EF�0 we have holes impinging on a quantum well and the
conductance is similar to that for EF�V. These resonances
for “normal” electrons are known as the Ramsauer effect. We
found that they become more pronounced with increasing
magnetic field. In the presence of a weak magnetic field,
such that �W�V holds, the solution inside the barrier can be
written as

�in�x� = �A exp�− �ky − �x�2/2��
B exp�− �ky + �x�2/2��

� . �66�

Matching the solutions at x=0 and x=W gives

�1 + r = A exp�− ky
2/2��

ei� − re−i� = B exp�− ky
2/2��� �67�

and

�teikx�W = A exp�− �ky − �W�2/2��

teikx�W+i� = B exp�− �ky + �W�2/2�� .
� �68�

Then the transmission probability reduces to

T =
4 cos � cos �eky

2/�

S+
2 + S−

2 + 2S+S− cos�� + ��
�69�

with S�=exp��ky ��W�2 /2��. For E�V and �W�V the
transmission probability reduces to

T �
e−�W2

cosh2�kyW�
. �70�

The corresponding conductance is

G =
4e2

vFh2

L

W
tanh�VW�e−�W2

. �71�

Similar to the single-barrier case, in we show a contour
plot of the logarithm of the conductance for a symmetric
double barrier in Fig. 15�a� and an asymmetric one in Fig.
15�b�. One feature common in both panels is the reduction in
the conductance upon increasing B and second an additional
region in panel �b�, centered around EF=150 meV, in which
G is significantly different from zero. We can see these fea-
tures more clearly in the conductance G, shown in Fig. 16,
for the symmetric double barrier �top panel� and the asym-
metric one �bottom panel� for three values of B. For clarity
the results for the symmetric case are shifted up by 0.15. The
first feature can be understood as follows. For B=0 the wave
vector to the left and right of the barrier is the same. This is
not the case when B is present because the wave vector com-
ponent ky is shifted by �W �see Fig. 6�. Then the green re-
gion in Fig. 3�c� will shrink and so will the transmission and
the conductance. The second feature, in the bottom panel,
centered around EF=150 meV in which G is significantly
different from zero, can be understood as follows. When the
barrier heights V1 and V2 are equal, there is only one region,
a rhombus, where tunneling involving real wave vectors is
allowed. If these heights are different, then we have two such
regions, one for each barrier. This is more clearly illustrated
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FIG. 14. �Color online� �a� Contour plot of the derivative of the
conductance of a p-n-p structure vs potential V and magnetic field
for W=100 nm. �b� Conductance of the structure in �a� vs potential
for different magnetic fields B=0, 50, 100, 150, and 200 mT.
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FIG. 15. �Color online� �a� Contour plot of the logarithm of the
conductance, in units of G0, of a symmetric double barrier vs en-
ergy and magnetic field with W=50 nm, separation Ws=50 nm,
V1=V2=100 meV. �b� As in �a� for an asymmetric double barrier
with V1=100 meV and V2=200 meV.
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in Figs. 17�a�–17�c�, where we show, respectively, the con-
ductance of two, three, and four asymmetric barriers shown
at the bottom right of each panel. The other insets show
pictorially these different transmission regions that are simi-
lar to that in Fig. 3. The vertical arrows pointing down in
Fig. 17 and the corresponding parallel ones in the insets
point to the same energies involved. Results to the right of
the vertical arrows in the figure correspond to energies above
the parallel arrows in the insets.

For completeness in Fig. 18 we show the conductance of
a double, symmetric well �upper panel� and of an asymmet-
ric one �lower panel� for positive energies �EF�0� with W
=50 nm, separation Ws=50 nm, V1=V2=−100 meV. For
clarity the results for the symmetric case are shifted up by
0.3. Had we plotted the results for EF�0, the picture would
be the same as Fig. 16. However, as expected for EF�0,
there is not much difference between the results of the two
panels.

One may wonder how the results given above change if
we do not have abrupt interfaces of the rectangular barriers
but instead consider, e.g., barriers or wells with smooth in-
terfaces. We consider two such barriers, together with a
square one, shown in the insets of Fig. 19. The second one is

described by the semielliptic profile

V�x� =
2V

W
�W2/4 − �x − W/2�2�1/2 �72�

and the third by the Gaussian profile

V�x� = V exp�− �2�/W2��x − W/2�2� , �73�

where W is chosen such that the integral �V�x�dx has the
same value for all three potential barriers.

To evaluate the transmission for such shapes we subdivide
their spatial extent or width in several square barriers of dif-
ferent height and for each of them we use the results of Sec.
III. Figure 19 contrasts the results of these shapes with those
for a square barrier of height V for zero field in the lower
panel and B=5 T in the upper one, which is shifted up by
0.15 for clarity. As can be seen, the results are qualitatively
similar but the conductance for a square barrier is a bit larger
when EF�V and has a less pronounced peak structure. The
resonant structure on the other hand is quantitatively differ-
ent for the three cases as expected but qualitatively there are
clear similarities.
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FIG. 16. �Color online� Conductance of a double barrier for
different magnetic fields vs energy with W=50 nm, Ws=50 nm,
and V=100 meV.
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FIG. 18. �Color online� Conductance of a double well for dif-
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V. CONCLUDING REMARKS

We evaluated the transmission and conductance through
single and double potential barriers and wells in the absence
or presence of a magnetic field. We also considered different
shapes of barriers as well as a few barriers with different
potential heights. We placed the emphasis on the influence of
these factors on the Fabry-Pérot resonances, that is, we stud-
ied them as Fabry-Pérot interferometers.

We obtained the energies for which the tunneling prob-
ability is maximum for single and double barriers. The
maxima in the transmission are connected with bound states,
for energy smaller than V /2, at E= �ky.

When a magnetic field is applied the cyclotron motion
leads to a decrease in the transmission and consequently in
the conductance. The magnetic field dependence of the posi-
tion of the resonances is very different from the nonrelativ-
istic electron case: �1� their shift in energy is linear in mag-
netic field and �2� for E�V they decrease with the field
while for E�V they increase.

For a single barrier we showed that the resonances in the
transmission are reflected in those of the conductance.

Extra resonances are found for EF�V /2 which result
from the connection between the maxima in the transmission
and the bound states. For the special value EF=V we found
that the conductance remains the same upon increasing
the magnetic field and is given approximately by
G= �4e2 /vFh2��L /W�tanh�VW�.

We showed that using asymmetric barriers, with unequal
heights, we can create several different transmission or con-
ductance regions in energy space involving only real wave
vectors whereas for symmetric barriers with equal heights,
there is only one such region. We also evaluated the conduc-
tance of single barriers with smooth interfaces. We found
that the oscillatory structure of the conductance becomes
somewhat more pronounced but remains qualitatively the
same as that of square barriers.
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